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Abstract. We present a system for the Recognizing Textual Entail-
ment task, based on various similarity metrics, namely (i) string-based
metrics, (ii) chunk-based metric, (iii) named entities-based metric, and
(iv) shallow semantic metric. We propose the chunk-based and named
entities-based metrics to address limitations of previous syntactic and
semantic-based metrics. We add the scores of the metrics as features
for a machine learning algorithm. Then, we compare our results with
related work. The performance of our system is comparable with the
average performance of the Recognizing Textual Entailment challenges
systems, though lower than that of the best existing methods. However,
unlike more sophisticated methods, our method uses only a small number
of simple features.

1 Introduction

The Recognizing Textual Entailment (RTE) task consists in deciding, given two
textual expressions, whether the meaning of one of them, called Hypothesis
(H), is entailed by the meaning of the other one, called Text (T) [5]. The RTE
Challenge is a generic task which addresses common semantic inference needs
across Natural Language Processing (NLP) applications.

In order to address the task of RTE, different methods have been proposed.
Most of these methods rely on machine learning (ML) algorithms. For example, a
baseline method proposed by Mehdad and Magnini [9] consists in measuring the
word overlap between the Text and Hypothesis; the word overlap is the number
of words shared between the two textual expressions. Their method is organized
into three main steps: (i) pre-processing: all T–H pairs are tokenized and lem-
matized; (ii) computing of the word overlap; (iii) building a binary classifier. An
overlap threshold is computed over the training data, and the test data is classi-
fied based on the learned threshold. If the word overlap score is greater than the
threshold, then the entailment decision is TRUE (there is entailment), otherwise
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it is FALSE (there is no entailment). The motivation behind this paradigm is
that a T–H pair with a strong similarity score has good chances to represent
an entailment relation. Different types of similarity metrics are applied over the
T–H pair in order to extract features and to train a classifier.

Similarity metrics that deal with semantics usually use information from on-
tologies or semantic representations given by parsers [2]. However, the compari-
son between texts is done by matching the semantic labels, and not by matching
the content of those units.

In this work we describe an RTE system based on various similarity metrics.
In addition, we propose new similarity metrics based on different representations
of text for RTE that are: (i) chunks and (ii) Named Entities. The goal of the
introduction of these new features is to address limitations of previous syntactic-
and semantic-based metrics. We add the scores of the new metrics along with
simple string-based similarity metrics and a shallow-semantic-based metric [11]
as features for a machine learning method for RTE. Then, we compare our results
with related work on RTE. The performance of our system is comparable with
the average performance of the RTE challenges, though it is lower than that of
the best known methods.

In the remainder of this paper we discuss the related work (Section 2), de-
scribe our RTE system (Section 3) and compare its performance with previous
work (Section 4). Finally, we give conclusions and suggest some future work
(Section 5).

2 Related Work

Burchardt et al. [2] introduced new features for RTE that involve deep linguistic
analysis and shallow word overlap measure. Their method consists of three steps:
first, they represent the T–H pair with the Frame Semantics (FS) and Lexical
Functional Grammars (LFG) formalisms; this representation is similar to the
Semantic Role Labeling. Then, they calculate a similarity score based on match-
ing the LFG graphs, and finally make a statistical entailment decision. They
used the RTE-2 and RTE-3 datasets as training data, and extracted 47 features
from the deep and the shallow overlap. These features consist of combinations
of predicates overlaps, grammatical functions match, and lexical overlaps.

The methods that use Semantic Role Labeling (SRL) for RTE use the an-
notation provided by a semantic parser to measure the similarity between texts.
However, they only measure the similarity in terms of how many labels the two
texts share (overlaps) and not in termos of the content marked with those labels.

Delmonte et al. [8] introduced semantic-mismatch features, such as locations,
discourse markers, quantifiers, and antonyms. Their entailment decisions are
based on applying rewards and penalties over the semantic similarity and shallow
similarity scores. Later, Delmonte et al. [6] participated in the RTE-2 challenge
with an enhanced version of their previous system. Their new system uses new
features based on heuristics, such as Augmented Head Dependency Structures,
grammatical relations, negations, and modal verbs.
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Roth and Sammons [12] used semantic logical inferences for RTE, where the
representation method is a Bag-of-Lexical-Items (BoLI). The BoLI relies in word
overlap. It states that the entailment relation holds if the overlap score is above
a certain threshold. An extended set of stopwords is used to select the most
important concepts for the BoLI, such as auxiliary verbs, articles, exclamations,
discourse markers, and words in WordNet. Also, in order to recognize relations
in the T–H pairs, the system checks matchings between SRLs, and then applies
a series of transformations over the semantic representations to make easier
to determine the entailment. Their system uses the following transformation
operations:

– annotate, which make some implicit property of the meaning of the sentence
explicit;

– simplify and transform, which remove or alter some section of the text T in
order to improve annotation accuracy or make it more similar to H;

– compare, which compares some elements of the two members of the entail-
ment pair and assigns a score that correlates to how successfully those ele-
ments of the H can be subsumed by the T.

3 Experimental Design

The RTE task can be seen as a binary classification task, where the entailment
relations are the classes. Then the RTE benchmark datasets can be used to train
a classifier [4].

Our RTE system is based on a supervised machine learning algorithm. We
train the machine learning algorithm with similarity scores computed over the
T–H pairs extracted from different classes of metrics described below.

With these metrics we build a vector of similarity scores used as features to
train a machine learning algorithm. We use the development datasets from the
RTE 1 to 3 benchmark to train different ML algorithms, using their implemen-
tations from the WEKA toolset3 without any parameter optimization. Then, we
test the models with a tenfold cross-validation over the development datasets to
decide which algorithm to use for the comparison against related work over the
test datasets.

The metrics we used as as follows.

3.1 Lexical Metrics

We use the following string-based similarity metrics: precision, recall, and F1:

precision(T, H) =
|T ⋂H |
|H | (1)

recall(T, H) =
|T ⋂H |

|T | (2)

3 http://www.cs.waikato.ac.nz/ml/weka/
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F1(T, H) = 2 × precision(T, H) × recall(T, H)
precision(T, H) + recall(T, H)

(3)

As input for the metrics we use a bag-of-words (BoW) representation of the
T–H pairs. However, we only use content words to compute the similarity score
in the T–H pairs.

3.2 Chunking

Shallow parsing (or chunking) consists in tagging a text with syntactically cor-
related parts. This alternative to full parsing is more efficient and more robust.
Chunks are non-overlapping regions of text that are sequences of constituents
that form a group with a grammatical role (e.g. noun group). The motivation
for introducing a chunking similarity metric consists in that a T–H pair with a
similar syntax structure can hold an entailment relation. The chunking feature
is defined as the average of the number of similar chunks (in the same order) in
the T–H pair:

chunking(T, H) =
1
m

m∑

n=1

simChunk(tn, hn), (4)

where m is the number of chunks in T, tn is the n-th chunk tag and content
in the same order, and simChunk(tn, hn) = 1 if the content and annotation of
the chunk are the same, and 0.5 if the content of the chunk is different but the
chunk tag is still the same.

The following example shows how the chunking metric works. Consider:

T: Along with chipmaker Intel , the companies include Sony Corp. , Microsoft
Corp. , NNP Co. , IBM Corp. , Gateway Inc. and Nokia Corp.

H: Along with chip maker Intel , the companies include Sony , Microsoft , NNP ,
International Business Machines , Gateway , Nokia and others.

First, for each chunk, this metric compares and scores the content of the tag:
whether it is the same chunk group and whether it is the same order of chunks.
Table 1 shows how this metric scores each chunk for the previous example.

Finally, the chunking metric (4) computes the individual scores and gives a
final score of chunking(T, H) = 0.64 for this example.

3.3 Named Entities

Named Entity Recognition (NER) is a task that identifies and classifies parts of
a text into predefined classes such as names of persons, organizations, locations,
expressions of times, quantities, monetary values, percentages, etc. For example,
from the text: “Acme Corp bought a new...”, Acme Corp is identified as a named
entity and classified as an organization.
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Table 1. Example of partial scores given by the chunking metric

Tag Content Tag Content Score

PP Along PP Along 1
PP with PP with 1
NP chipmaker Intel NP chip maker Intel 0.5
NP the companies NP the companies 1
VP include VP include 1
NP Sony Corp. NP Sony 0.5
NP Microsoft Corp. NP Microsoft 0.5
NP IBM Corp. NP International Business Machines 0.5
NP Gateway Inc. NP Gateway 0.5
NP Nokia Corp. NP Nokia and others. 0.5

The motivation of a similarity measure based on NER is that the participants
in H should be the same as those in T, and H should not include more participants
in order to hold an entailment relation. The goal of the measure is to deal with
synonymous entities.

Our approach for the NER similarity measure consists in the following: first,
the named entities are grouped by type; then, the content of the same type
of groups (e.g Scripps Hospital is an organization) is compared using the cosine
similarity equation. However, if the surface realizations of the same named entity
in T and H are different, we retrieve words that share the same context as the
named entity in question; the words are retrieved from Dekang Lin’s thesaurus.
Therefore, the cosine similarity equation will have more information than just
the named entity.

For instance, consider the T–H pair from the previous example. The entity
from T: IBM Corp. and the entity from H: International Business Machines
have the same tag organization. Our metric groups them and adds words from
the similarity thesaurus resulting in the following bag-of-words (BoW) represen-
tation:
T’s entities: {IBM Corp., ..., Microsoft, Intel, Sun Microsystems, Motorola /

Motorola, Hewlett-Packard / Hewlett-Packard, Novell, Apple Com-
puter, ...}

H’s entities: {International Business Machines, ..., Apple Computer, Yahoo,
Microsoft, Alcoa, ...}.

Finally, the metric computes the cosine similarity between these BoWs.

3.4 TINE

TINE [11] is an automatic metric based on the use of shallow semantics to
align predicates and their respective arguments between a pair of sentences.
The metric combines a lexical matching with a shallow semantic component to
address adequacy for machine translation evaluation. The goal of this metric is
to provide a flexible way of align shallow semantic representations (semantic role
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labels) by using both the semantic structure of the sentence and the content of
the semantic components.

A verb in the hypothesis H is aligned to a verb in the text T if they are
related according to the following heuristics: (i) the two verbs share at least one
class in VerbNet, or (ii) the pair of verbs holds a relation in VerbOcean.

For example, in VerbNet the verbs spook and terrify share the same class,
namely, amuse-31.1, and in VerbOcean the verb dress is related to the verb wear.

The following example shows how the alignment of verbs and predicates is
performed. Consider:

H: The lack of snow discourages people from ordering ski stays in hotels and
boarding houses.

T: The lack of snow is putting people off booking ski holidays in hotels and guest
houses.

Then, the algorithm proceeds with the following steps:

1. Extract verbs from H: VH = {discourages, ordering}
2. Extract verbs from T: VT = {putting, booking}
3. Similar verbs aligned with VerbNet (shared class get-13.5.1):

V = {(vH = order, vT = book)}
4. Compare arguments of (vH = order, vT = book):

AH = {A0, A1, AM-LOC}
AT = {A0, A1, AM-LOC}

5. AH ∩ AT = {A0, A1, AM-LOC}
6. Exact matches:

HA0 = {people} and TA0 = {people}
7. Different word forms:

expand the representation:
HA1 = {ski, stays} and TA1 = {ski, holidays}
to:
HA1 = {{ski}, {stays, remain, ..., journey, ...}}
TA1 = {{ski}, {holidays, vacations, trips, ..., journey, ...}}

8. Similarly with HAM−LOC and TAM−LOC

Here, VH is the set of verbs in the hypothesis H, VT is the set of verbs in the
text T, AH is the set of arguments of the hypothesis H, and AT is the set of
arguments in the text T.

The metric aligns similar verbs with the ontology and similar arguments with
a distributional thesaurus. Then, the metric computes a similarity score given
the previous alignment points.

4 Experimental Results

We compared our method with other machine learning-based methods and with
methods that use a SRL representation as one of its features.
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Table 2. The 10-fold cross-validation accuracy results over the RTE development
datasets

Algorithm RTE-1 RTE-2 RTE-3

SVM 64.90% 59.00% 66.62%
NäıveBayes 62.25% 58.25% 64.50%
AdaBoost 64.90% 57.75% 62.75%
BayesNet 64.19% 59.00% 65.25%
LogitBoost 62.25% 52.50% 61.00%
MultiBoostAB 64.55% 60.50% 64.00%
RBFNetwork 61.90% 54.25% 64.80%
VotedPerceptron 63.31% 57.75% 65.80%

We used the RTE-1, RTE-2, and RTE-3 development datasets to train the
classifiers. Table 2 shows the tenfold cross-validation results.

The SVM achieved the best results in the experiments during the training
phase. We use this algorithm to perform the classification over the RTE test
datasets. The data used for classification are the test datasets of the RTE chal-
lenge. The experimental results are summarized in Table 3.

Table 3. Comparison with previous accuracy results over the RTE test datasets

Method RTE-1 RTE-2 RTE-3

Roth and Sammons [12] – – 65.56%
Burchardt and Frank [1], Burchardt et al. [2] 54.6% 59.8% 62.62%
Delmonte et al. [8], [6], [7] 59.25% 54.75% 58.75%
Our method with SVM 53.87% 55.37% 61.75%

Table 4 shows the overall accuracy results of the RTE systems on the RTE
test datasets against our method. Our method is close to the average performance
but below the best method.

However, the systems that showed the best results in the RTE challenge are
complex and sophisticated systems. In contrast, our method relies on a small
number of simple features. Our main semantic feature is focused in predicate-
argument information, while other methods tackle several semantic phenomena
such as negation and discourse information [12] or rely on a large number of
features [2].

Table 4. Comparison with overall accuracy results over the RTE test datasets

Challenge Our method Average Best

RTE-1 53.87% 55.12% 70.00%
RTE-2 55.37% 58.62% 75.38%
RTE-3 61.75% 61.14% 80.00%
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Error analysis shows that the most common source of errors for our method
is the TINE similarity metric. The following categories of errors made by this
metric are the most common ones:

1. Lack of coverage in the ontologies, for example:

T: This year, women were awarded the Nobel Prize in all fields except
physics.

H: This year the women received the Nobel prizes in all categories less phys-
ical.

The lack of coverage in the VerbNet ontology prevented the detection of the
similarity between receive and award.

2. Matching of unrelated verbs, for example:

T: If snow falls on the slopes this week, Christmas will sell out too, says
Schiefert.

H: If the roads remain snowfall during the week, the dates of Christmas will
dry up, said Schiefert.

In VerbOcean, remain and say are incorrectly indicated to be related. The
VerbOcean dictionary was created by a semi-automatic extraction algo-
rithm [3] with an average accuracy of 65.5% and thus contain a considerable
number of errors.

3. Incorrect tagging of the semantic roles by the semantic parser SENNA4, for
example:

T: Colder weather is forecast for Thursday, so if anything falls, it should
be snow.

H: On Thursday, must fall temperatures and, if there is rain, in the moun-
tains should.

The position of the predicates affects the SRL tagging. The predicate fall
has the roles (A1, V, and S-A1) in the reference, and the roles (AM-ADV,
A0, AM-MOD, and AM-DIS) in the hypothesis H. As a consequence, the
metric cannot match the fillers. Also, SRL systems do not detect phrasal
verbs: e.g., the action putting people off is similar to discourages but current
SRL systems do not detect this.

As we see, the quality of the semantic parser and the coverage of the ontolo-
gies are significant causes that affect the performance of our method.

In addition, on the RTE-1 test dataset with 800 T–H pairs, the coverage of
the semantic metric is 491 pairs. This means that the system only predicts a
certain amount of pairs. On the RTE-3 dataset, on which we obtain the best
result, also has 800 T–H pairs, but the coverage on this dataset is much better:
556 pairs. Accordingly, our method has a smaller amount of errors due to a
greater number of semantic-scored pairs.

4 SENNA, http://ml.nec-labs.com/senna/
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5 Conclusions and Future Work

We have presented a machine learning-based system for Recognizing Textual
Entailment (RTE) task, based on new similarity metrics as well as simple string-
based metrics and a shallow-semantic metric. The new similarity measures are
based on: (i) chunking, (ii) named entities.

Our method has performance comparable with the average performance of
methods in the RTE challenges. However, its performance is below that of the
best know methods. On the other hand, our method relies on a small num-
ber of simple features, and our system only tackles one semantic phenomenon:
predicate-argument information.

A preliminary error analysis shows that a main source of errors is the align-
ment of predicates by the TINE measure. However, if the system has more pairs
tagged with predicate-argument information, then its performance improves.

In order to improve the performance of our current machine learning-based
system, in our future work we will attempt to resolve the errors caused by the
TINE metric based on the error analysis, or will use a different semantic approach
to RTE [10].

Our semantic metric uses a distributional thesaurus to measure the similarity
between arguments, so that, for example, cat and dog will be aligned because
they share the same context. A possible direction to improve the semantic metric
is to add hard constraints over the core arguments. These constrains can be
defined as thresholds learned over the training dataset.
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